checksum

One of the primary reasons that intruders can be successful is that most of the information they acquire from a system is in a form that they can read and comprehend. When you consider the millions of electronic messages that traverse the Internet each day, it is easy to see how a well-placed network sniffer might capture a wealth of information that users would not like to have disclosed to unintended readers. Intruders may reveal the information to others, modify it to misrepresent an individual or organization, or use it to launch an attack. One solution to this problem is, through the use of cryptography, to prevent intruders from being able to use the information that they capture. Encryption is the process of translating information from its original form (called plaintext) into an encoded, incomprehensible form (called ciphertext). Decryption refers to the process of taking ciphertext and translating it back into plaintext. Any type of data may be encrypted, including digitized images and sounds. Cryptography secures information by protecting its confidentiality. Cryptography can also be used to protect information about the integrity and authenticity of data. For example, checksums are often used to verify the integrity of a block of information. A checksum, which is a number calculated from the contents of a file, can be used to determine if the contents are correct. An intruder, however, may be able to forge the checksum after modifying the block of information. Unless the checksum is protected, such modification might not be detected. Cryptographic checksums (also called message digests) help prevent undetected modification of information by encrypting the checksum in a way that makes the checksum unique. The authenticity of data can be protected in a similar way. For example, to transmit information to a colleague by E-mail, the sender the information to protect its confidentiality and then attaches an encrypted digital signature to the message. When the colleague receives the message, he or she checks the origin of the message by using a key to verify the sender's digital signature and decrypts the information using the corresponding decryption key. To protect against the chance of intruders modifying or forging the information in transit, digital signatures are formed by encrypting a combination of a checksum of the information and the author's unique private key. A side effect of such authentication is the concept of nonrepudiation. A person who places their cryptographic digital signature on an electronic document cannot later claim that they did not sign it, since in theory they are the only one who could have created the correct signature. Current laws in several countries, including the United States, restrict cryptographic technology from export or import across national borders. In the era of the Internet, it is particularly important to be aware of all applicable local and foreign regulations governing the use of cryptography.

1st Security Agent

Mail Bomber

Security Administrator

PC Lockup

Access Lock

Access Administrator Pro

ABC Security Protector

1st Security Agent

Mail Bomber

Security Administrator for Windows

PC Lockup

Access Lock

Access Administrator

ABC Security Protector

http//www.softheap.com